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Abst rac t .  From a family of graded solvable models we derive representations of 
the braid group associated with the Lie superalgebra gl(M1N) and give explicitly a 
geneial form of the Markov traces on the representations. The braid operatols thus 
obtained satisfy the Hecke algebra. We construct composite solvable models and 
obtain link polynomials from the braid operatols for the composite models. 

1. Introduction 

It is well known that the Yang-Baxter relation is a sufficient condition for the solv- 
ability of models i n  statistical mechanics and field theories [l-71. The Boltzmann 
weight w(a,  b , c , d ; u )  of a vertex model is defined on the configuration { U ,  b , c , d }  of 
edge variables round a vertex (figure 1). For vertex models the Yang-Baxter relation 
is 

c 4 4  c, Q, r;  U)w(a,  t ,  P, c ;  U + v ) w ( i ,  j ,  a,  6 ;  .) 
abc 

= w(a,  b , p ,  q ;  v)w( i ,  c ,  a ,  r ;  U + v ) w ( j ,  k, b ,  c ;  U ) .  (1) 
abc 

Here, the parameter U is called the spectral parameter, which represents the strength 
and anisotropy of the coupling. We define the Yang-Baxter operator (construction 
unit of the diagonal-to-diagonal transfer mahix) for vertex models by 

Here X::(u) = w(c ,  d ,  b ,  a ;  ,U), I(’) denotes the identity matrix and eab a matrix such 
that = bj,,6,,. We note that the operators { X , ( U ) }  act on the tensor product 
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space V( ' )  8 V(2) @ 8 ' .  @ V ( " ) .  In terms of the Yang-Baxter operators X i ( . )  the 
Yang-Baxter relatioll (1) is written as (Yang-Baxter algebra) [ I ,  3, 8, 91 

(3) 
Xi(u)Xi+1(U + v)Xi(u) = Xi+l(v)Xi(u + v)Xi+l(u) 
Xi(U)Xj(U) = Xj(V)Xi(U) li - j l  3 2. 

The Yang-Baxter relation in this form has an advantage in that we can easily see the 
connection of solvable models to the braid group. 

Figure 1. Boltzmaiin weight of vertex model w(a,  b, c,  d; U). 

Recently, the Yang-Baxter relation has been found to be a key to  several fields in 
mathematical physics. First, the relation is an extension of the defining relations of 
the braid group; we can construct link polynomials, topological invariants for knots 
and links, from solutions of the Yang-Baxter relation. A general method to construct 
braid group representations and link polynomials from exactly solvable models has 
been established [8-231. We can formulate various link polynomials [24-281 by this 
method and obtain new link polynomials [8, 9, 11 ,  12, 19, 221. From this viewpoint 
the relation is a tool for knots and links [18]. Second, the representations of the braid 
group can be considered as extensions of representations of the symmetric group. They 
are related to  interesting mathematical objects, such as the Temperley-Lieb algebra, 
Hecke algebra, C' algebra, etc [25, 291. Finally, braid matrices derived from exactly 
solvable models are closely connected to new physics such as the monodromy matrices 
of the Knizhnik-Zamolodchikov equation [30-321 and strange statistics [33, 341. 

In this paper we construct representations of the braid group and link polynomials 
from a family of graded vertex models related to the Lie superalgebra gl(M1N). The 
symmetry of the models is different from that for the models associated with the Lie 
algebra sl(M). We discuss the composite models and link polynomials derived from 
them. 

The outline of this paper is given in the following. In section 2 we introduce vertex 
models associated with gl(AdlN) and explain the graded Yang-Baxter relation and the 
connection to the Lie superalgebra gl(M1N). We construct composite vertex models 
from these models. In section 3 we derive representations of the braid group from 
the vertex models and obtain link polynomials by constructing the Markov traces on 
the representation. We discuss link polynomials obtained from composite models. In 
section 4 we give concluding remarks. 

2. Graded vertex iiiodels 

2.1. Ver t ex  models associated with gl(M1N) 
Let us introduce a family of solvable vertex models associated with gl(M1N) [23, 351. 
The models are given in the case IB in [35]. We introduce a set of signs {q} 

q = l o r - l  for i = l , . . . , M + N  . (4) 
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Note that the sign c i  represents the 'parity' of the edge state i .  We also introduce 
the 'grade' p ( i )  E (0, l} of the edge stat.e i as ci = ( - l ) P ( i ) .  The number of positive 
(respectively negative) signs is given by h4 (respectively N ) .  In this way we have 
introduced the graded symmetry. For any set of signs {ti} we have a solution of the 
Yang-Baxter relation. The Boltzmann weights are given as follows: 

w(a, a,  a ,  a ;  U )  = sinh(7 - c,u)/sinh 7 
for a < b 
for a > b w(a, 6 ,  b ,  a ;  U )  = { exp(-U) 

exP(U) ( 5 )  

w(a, b ,  U ,  b ;  U) = sinh ulsinh 77 for a # b.  

Here 7 is a parameter and the edge variables a and b take values 1,2, . , M + N .  The 
models have the charge conservation property: w(a, b ,  c ,  d ;  U) = 0, unless a + b  = c+d.  
Here a represent,s 'charge' of trhe state a ,  which is vector valued in general. The 
Boltzmann weights satisfy the reflection symmetry w ( a ,  b ,  c ,  d ;  U) = w(c, d ,  b ,  a;  U ) .  

They also satisfy the standard initial condition and the inversion relation. 

(i) Standard initial condition: 

X,","(U = 0) = 6,,6,,. 

(ii) Inversion relation (unitarity condition): 

where p(u)  = sinh(7 - u)/sinh 7 .  
It is instructive to consider simple examples of the models. For M + N = 2, the 

case (c l ,  E ~ )  = (1 , l )  (and (-1, -1)) is equivalent to the 6-vertex model. The model for 
the case ( c l ,  c2) = (1, -1) (and (-1, 1)) corresponds to the free fermion 6-vertex model 
[36]. We note that by changing the sign of the spectral parameter as U -+ -U and 
changing signs in the Boltzmann weight>s as w(a, b ,  b ,a ;  U) + -w(a, b ,  b ,  a ;  U) ( a  # b ) ,  
the models for (-1, -1) and (-1, 1) are transformed into those for (1, 1) and (1, -1), 
respectively. For h4 + N > 2, the two cases: ci = 1 (for all i) and ci = -1 (for all i) 
are the M-state vertex models associated with sl(M) [35, 371. 

Under the charge conservation property the Boltzmann weights of the models sat- 
isfy the Yang-Baxter relation after the following transformations (symmetry breaking 
transformations, or gauge transformations) [22, 381: 

where C is a free parameter, p and U are vectors with arbitrary directions and mag- 
nitudes, and e is a vector such tha.t ( a  + c )  - r  is an integer for any edge charges a 
and c. 
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2.2. Reduction t o  rational solutions assoc ia ted  w i t h  gl(M1 N) 
We briefly introduce the notion of Lie superalgebras [39]. A Lie superalgebra is a 
Z,-graded algebra over C. We define the grade p(A) of an element A by 

0 if A is bosonic 
1 if A is fermionic. P(A) = { 

The bracket given by 
[A, B] = A B  - (-l)p(A)p(B)BA 

satisfies the super-Jacobi identity: 
(-l)p(A)p(C)[A, [B,C]]  + ( - l )p(B)p(A)[B,  [C,A]] + (-l)p(C)p(B)[C,[A,B]] = 0. 
We define the tensor product A 8 B with the induced grading: 
(al 8 b , )  (a, 8 b , )  = (-l)p(b1)P(a2)ulaZ 8 b l b ,  
We introduce the graded permutation operator T,  as 

ai E A,  bi E B .  

Ti(") = "::(")1(1) 8 . . . e t ;  8 e'a'dfl) 8 I('+,) 8 . . . QD ~ ( n )  

abcd 

where 
"$ = ( _ l ) P W P ( * ) b  6 ad bc' 

Let us consider the Lie superalgebra gl(M1N). The generators {E:}  of gl(M1N) 
satisfy the defining relations 

The parity of the generator E t  is given by (-l)P(a)tP(b). The Casimir operator C for 
gl(M1N) is given by 

(15) [E;, E;] = b,,E: - (- l)(P(a)+P(b))(P(c)+P(d))6 EC ad b .  

c = C(-l)'(b)E;E;.  (16) 
ab 

We return to the vertex model given in ( 5 ) .  The R matrix R(u)  in the context of 
the quantum inverse scattering method is related to the Yang-Baxter operator X ( U )  
by 

R$(u) = x; : (U)T," ,c .  (17) 
The matrix elements R$(u)  satisfy the graded Yang-Baxter relation [40] 
R ; ~ ( ~ ) R ; ~ J ( ~  + v)Rjb4(v)(_l)p(b)p(c)+p(o)p(k)+po)p(j)  

By rescaling the variables as U - EU, 77 - EV and taking the limit E -+ 0,  we derive 
a rational solution [41] of the Yang-Baxter relation from the vertex model (5). The 
Yang-Baxter operator Zi(u) for the rational solution has the form 

(18) = R ; ; ( ~ ) R : ; ( ~  + v ) ~ ; g  (,)(-1)p(~)p(b)+p(i)p(c)+p(j)p(~), 

- U 
(19) & ( U )  = I - -Ti. 

77 
Here ri is the graded permutation operat,or (13). The rational solution for the R 
matrix satisfies the graded Yang-Baxter relation (18) [40]. 

Thus the vertex model (5) can be considered as an extension ( q  analogue) of the 
rational solution (19). In sectmion 3 we shall see that the braid operator obtained from 
the vertex model is a q analogue of the graded permutation operator, and that the 
infinitesimal pure braid operator for the braid operator is equivalent to the Casimir 
operator (16) of gl(M1N). 
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2.9. Fusion of the vertex model associated wiih g l ( 4  N )  

By the method of fusion we can construct composite solvable models [12, 14, 421. 
These models are special cases of Z-invariantly generalised inhomogeneous models 
[43]. In the following discussion we use only one property, that the Yang-Baxter 
operator Xi( . )  for the vertex model (5) has two eigenvalues; more precisely, has 
quadratic minimal polynomial. From this property the Yang-Baxter operator becomes 
the projection operator when the spectral parameter U = fr] [14]. We introduce an 
operator Ai by 

Then we see that the operator satisfies the relations 

Here we have introduced a parameter t through t = exp2v. We note that,  for the 
case g1(210), { A i }  satisfy the Temperley-Lieb algebra [29]. Using the operator Ai the 
Yang-Baxter operator Si(.) for the vertex model ( 5 )  is written as 

where 

If we define Gi = I - t ' / ? A i ,  then the operators { G i }  generate the Hecke algebra [25]: 

We may regard the generators of the Hecke algebra as generalised Young operators 
[12, 441. If we define 

then Pi['] and Pi["] are the projectors with even and odd parity, respectively. Hereafter 
we consider 19[". The projectors Pih] corresponding to the Young diagram with one 
row (k boxes) are recursively given by 
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Note that IC is the number of strings in a composite string. The identity I( ')  (E BLkl) 
is given by 

T Deguchi and Y Akutsu  

qP1 n- 1)k-t . l '  (29) P I  = Pl (I.1 Pktl [kl . . . 

PI Using the projectors we construct composite Yang-Baxter operators {& ( U ) ;  for i = 
1 , .  . . , n }  a~ [12, 141 

where 

For example, in the case of two strings (k = 2) it is given by 

The composite operators act on the composite space which is constructed by applying 
the identity operator to the space V ( ' )  @ V(2) @ s s @ V(k"). 

We note that this method of construction of composite solvable models is applicable 
not onlyfor the vertex models relat,ed to sl(M) but also those associated with gl(MIN), 
and furthermore any vertex or IRF models with quadratic minimal polynomials. 

For the method of fusion there is an exception. Only for gl(ll1) does the composi- 
tion yield degeneracy. The composite model of the free fermion model is equivalent to 
the free fermion model itself. We note that for the free fermion model the dimensions 
of the eigenspaces for the projection operators Pis] and P[A] are both equal to two. 
Therefore by the method of composition the dimensions of the edge variables do not 
increase. 

3. Braid group and the Markov trace 

3.1. Representations of the Brazd group 

We introduce braids and the braid group [45]. The braid group B, is defined by a set 
of generators, b,, . . . ,  bn- l  which satisfy 

bibi t lbi  = bit1bibit ,  
b . 6 .  = b . b .  l i - j l  2 2. s t  J 1  

(33) 

According to the general method [ 8 , 9 ,  18-20] we construct braid matrices and the 
Markov trace on the representations. Taking the limit U -+ 00, we obtain representa- 
tions of the braid group from the Boltzmann weights of the vertex models. The braid 
operator G,(+), the inverse operator Gi(-) and the identity operator I are given by 

G i ( k )  = lim X i ( f u ) / p ( f u )  

I = X i ( 0 ) .  
u-w (34) 

(35) 
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Hereafter we write the matrix elements of the braid operator as 

G$( f )  = liin w(c, d ,  b ,  a : f u ) / p ( f u ) .  (36) 
U-03 

Then we can express the braid operator (34) constructed from the Yang-Baxter op- 
erator as 

G( f ) i  = C G$(f)l( ' )  8 + .  . @  @ er:') 8 I('+') 8 * .  8 I(n). (37) 
abcd 

It may be instructive to write the matrix elements of the braid operator: 

i - 1  n 

where 6; is the Kronecker delta. 
The elements of t8he braid matrices are given in the following: 

for E ,  = 1 
for f a  = -1 

G;t(+) = - t1 /2  for a # b .  

Here a variable t is defined by t = e x p ( 2 ~ ) .  We obtain 2M+N different representations 
depending on the choice of the signs { c a } ,  [23]. Note that by replacing t with t-' and 
multiplying the braid matrix by -1, we have an equivalent representation. 

Each represent,at,ion has only two eigenvalues 1 and - 1 .  The braid matrices satify 
the Hecke algebra relat,ions (25). Thus we have seen that the Hecke algebra also 
appears in the braid matrices associated with the Lie superalgebra gl(M(N). 

By taking the limit 11 + 0 we derive the graded permutation operator (13) from 
the representation of the braid group (39). Thus the braid operator is a q analogue of 
the graded permut,ation operator. 

Let us consider the connection of the braid matrix (39) to the Casimir operator of 
gl(M1N). Pure braid generators {ICij} [45] are related to the generators of the braid 
group by 

I { . .  ' J  = b i b i + l . .  . b .  I - 1  b2b-I  J J - 1  . .  . b r '  

Ii'ij = I + @ij + O(V) 

for i < j ,  (40) 

If the operator K i j  can be expanded in terms of a small parameter q as 

(41) 

then the operator Rij is called the infinitesimal pure braid operator [30, 31, 461. Note 
that the operator Rij  act,s on the ith and j t h  vector spaces in the tensor product space 
V ( ' )  8 . . @ V(") .  Let us introduce an operat,or Cij by 
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where {E: ( j )}  are the generators of gl(M1N) acting on the ith vector space in the 
tensor product V ( l )  @ .  . . V(" ) .  The operator Cij is equivalent to the Casimir operator 
of gl(M1N) acting 011 the ith and j t h  vector spaces except for constant terms. The 
infinitesimal pure braid operator Q,, obtained from the braid matrix (39) coincides 
with the matrix element,s of the operator Cij except for a constant term, which is 
related to  the normalisation factor of the braid matrix. Thus the the braid operator is 
related to the Casimir operator for gl(M1N). In this sense the vertex model given by 
( 5 )  is associated with gl(M1N). Here we note that the matrix elements of the operator 
Cij are calculated by using equation (12) for the graded tensor product: 

T Deguchi a i i d  Y Akuisu 

( E  8 F )  (1.) 8 J b ) )  = ( - l ) P ( F ) P ( a ) E l a )  8 F l b ) .  (43) 

It is remarked that through the symmetry breaking transformation (8) we can 
derive different braid mat#rices from the graded vertex model (5) [22]. The number of 
the non-zero elements are different. 

3.2. General form of 2he Markov trace 

It is known that any oriented link can be expressed by a closed braid. The equivalent 
braids expressing the same l ink  are mutually transformed by a finite sequence of two 
types of operations, hfarkov moves I and I1 (figure 2). The Markov trace d( . )  is a linear 
functional on the represent.ation of the braid group that has the following properties 
(the Markov properties): 

where 

= d ( b i )  for all i 
for all i. ?- = 9(67') 

From the Markov trace we obtain a link polynomial a(.) as [8-10, 12-14, 18-20] 

Here e (A)  is the exponent s u m  of bi in the braid A ,  which is equivalent to the writhe 
of the link diagram. For instance, if A = bfb,2b,bi',  then e(A)  = 4 - 2 + 1 - 1 = 2 . 

Let us construct the Markov trace on the representations derived in the last section. 
We find that for any grading i f i }  the Markov trace is given by 

Here the diagonal matrix h is 
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4 

Figure 2. Markov moves I and 11. 

We give sufficient conditions for the Markov properties (44) and (45) in the fol- 
lowing. For the Markov property I the charge conservation property is sufficient. For 
the Markov property I1 the charge conservation property and the following condition 
are sufficient: 

x G $ ( k ) h ( b )  = x(&) (independent of U ) .  (50) 
b 

Here the r factors are related to ~ ( k )  as ? / r  = x ( - ) / x ( + ) .  
We can prove the ma.t.rix h. given by (49) satisfies condition (50) by induction on 

M + N .  Thus we have constructed the Markov trace on the braid matrix given in 
(39). We remark that in the limit q -+ 0, the Markov trace reduces to the supertrace 
[39] str A = Cj cjAjj.  Hence the Markov trace (48) is an extension ( q  analogue) of 
the supertrace. 

From the explicit form of the Markov trace we find that 

x(k) = exp(f(A4 - N - 1)q). (51) 
If we define q'I2 = Cj h ( j ) ,  then 

s inh ( (h  - N ) q )  
sinh q 

q ' / 2  = 

We can prove the extended Ma.rkov property [13, 15, 18-20], which is an extension 
of the Markov property with finite spectral parameter: 

x X $ ( z r ) h , ( b )  = H ( u ;  q)p(u) (independent of U )  (53) 
b 
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where the function H ( u ;  77) is called the characteristic function and given by 

This form is a generalisation of the characteristic function for the model of the type 
A M - 1  (sl(M)) [15, 18-20]. 

We can generalise the formula (48) for the Markov trace into the following: 

Here k(a) is arbitrary. Note that the Markov move I1 always operates on the braids 
from the right and therefore the ends of the left-most string keeps untouched in the 
operation. In this way we have the Markov trace 4*(.) ,  This regularisation is useful 
when the quantity q'12 = Cj h( j )  is equal to 0. In fact q'12 is equal to 0 for gl(M1M). 
In this case using this regularisation (55) we define the Markov trace as 

4' (A)  = Tr(H*(n)A)/Cjk(j) A E B,. (56) 

For the representat,ion of the braid group (39) the value of the Markov trace 4 * ( . )  (55) 
is independent of the choice of { k ( j ) }  except for special cases such as Cj k(j) = 0. 

3.3. Composite string representation of t h e  braid group 

Let us consider the braid operators derived from the composite solvable models. In 
the limit U -..* 00 we have 

where 

The eigenvalues of the composite braid operat,or determine the reduct ion relation 
(minimal polynomial) of the operator [&IO, 12, 18-20]. Since the calculation done in 
[12] was based only on the defining relations of the Hecke algbra, we readily see that 
the eigenvalues {cr} of the braid operators derived from the composite Yang-Baxter 
operators are given by [12] 

Here the number s is given by 2s = k. We have chosen the normalisation factor so 
that the eigenvalues coincide with those obtained in [8-121. 
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3.4. Link polynoiitinb 

The link polynomial obtained from the vertex model associated with gl (M1N) has the 
skein relation 

Here we have defined a number 1 as 

Since the skein relation is of second degree, the link polynomial is fully determined 
by the relation. Thus we obtain a hierarchy of link polynomials that depends on the 
number 1 = M - N - 1 .  The most characteristic point of this hierarchy is that from 
the Markov traces and t,he braid matrices with different sizes the same link polynomial 
for an integer 1 is constructed [23]. From different models related to gl(M1N) with 
1 = M - N - 1 we obtain the same link polynomial. Note that the hierarchy includes 
the case 1 = 0 where T / r  = 1 .  For any integer 1 we have a link polynomial with the 
relation (60). We remark that the link polynomial for an integer 1 corresponds to that 
for -2 - 1 under the replacement o f t  by l / t .  

The HOMFLY polynomial [26, 271 is characterised by the second-degree skein rela- 
tion: 

Here t and w are iiiclependent (conti~iuous) variables. We see that the link polynomials 
constructed from the gl(MlN) type vertex models correspond to the cases w = t ' ,  1 E 2 
of the HOMFLY polynonual. Based on the Markov traces we thus obtain a hierarchy 
of link polynomials corresponding to the HOMFLY polynomial [23]. 

We discuss special cases in  the hierarchy. The link polynomial for I = -1 is the 
Alexander polynomial [24]. The cme 1 = 1 corresponds to the Jones polynomial. [25]. 
Therefore we have a number of braid matrices with different sizes which lead to the 
Alexander polynomial and the Jones polynomial. Braid group representations and link 
polynomials for the cases N = 0 were obtained from the study of the s l (M)  vertex 
models [47], from q deformation of universal enveloping algebras U,(sl(M))  [48], and 
by using the V\'u-Kadanoff-\~'egiier transformation [13, 19, 201 from the A,- type 
IRF models [15]. The braid matrix for the case M = l , N  = 1 was also obtained by 
solving the definfing relations of the braid group [49]. This case is obtained from the 
free fermion 6-vertex model in our approach. 

We can 
show the existence of the Markov trace for the composite string representations by 
two different met,hods. The first one is to prove the extended Markov property for 
the composite model. From the operator form of the composite Yang-Baxter oper- 
ator $"(U) (30) (for IC strings) the characteristic function H['](u;  7 )  is recursively 
calculated as 

Let us consider l i n k  polynomials derived from the composite models. 

k sinh((M - N - 1 + r)v - U) 
sinh(r7 - U) z-I["I(.u; 7) = n 

r=  1 
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The other method is to consider the composite string representation. [ l l ,  12, 201. 
By the discussion given in [12] a sufficient condition for the Markov property is the 
following eigenvalue equation : 

pi[’lA’ = axpi[’] (64) 
where Ai is half twist [12, 451 and X denotes the symmetry of the projector. We 
construct link polynomials by solving equation (64). Projectors satisfying equation 
(64) for mixed symmetry have been calculated [12, 19, 201. The braid operators for 
the composite string are given by 

where 

The Markov trace $[’I(.) is given by (for the cases gl(M1N) with M # N )  [ l l ,  121 

$[’](A) = 4(A)/[4(P/”)ln A E BA’]. (67) 

$[’](A) = q5*(A) A E Bk]  (68) 

Here d(.) is defined by (48) and (49). For the cases gl(MIM), we introduce the Markov 
trace by 

where O*(.) is given by (56). We remark that we can also use the definition (68) for 
the cases gl(M1N) with A i  # N .  

Link polynomials are given by 

where A is a braid whose closed braid is equivalent to the link L ,  e ( A )  is the exponent 
sum of the braid A and 

2, = $[’](Gj) Gj E Bp1 (70) 

2’ = $ J [ ’ ] ( G ; ~ )  G;‘ E BL’]. (71) 
The skein relations for the l ink polynomials constructed from the composite models 
with symmetry corresponding to the Young diagram for one row is given as follows: 

a ( ~ , + )  = t’(1 - t 2  + t 3 ) a ( ~ ? + )  + t 2 ’ ( t 2  - t 3  + t 5 ) a ( ~ + )  - t 3 ’ t 5 a ( ~ , )  for IC = 2 

(72) 
= t3’l2(1 - t 3  + t 5  - t 6 ) a ( ~ 3 + )  + t3’( t3  - t 5  + t 6  + t8  - t 9  + 

+ t 9 ’ 1 y - P  + t 9  - t l l  + t 1 4 ) a ( L t )  - t6’d’4a(Lo) for L = 3. (73) 
We see that these link polynomials correspond to the two-variable link invariants with 

It is remarked that the factor w = t’ is different from the sl(M) cases for I = 
0 , - 1  and therefore the link polynomials for 1 = 0,-1 are new in this sense. It is 
interesting that the Alexander polynomial is related to the free fermion model. Note 
that generalisations of t,he Alexander polynomial are obtained from the composite 
models related to gl(A1lM) ( A 4  > 1 ) .  These link polynomials have higher-degree 
skein relations such as (72) and (73). 

w = t‘ 112, 201. 
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4. Concluding remarks 

A family of vertex models given in (5) may be regarded as models associated with 
gl(M1N) for the following reasoiis: (i)  the braid matrix derived from the model is a q 
analogue of the graded permutation operator; (i i)  the infinitesimal pure braid operator 
for the braid matrix is equivalent to the Casimir operator of gl(M1N); (iii) the rational 
solution for the vertex model obtained in the limit q + 0 is written in terms of the 
graded permutation operator. 

Based on the Markov trace we have constructed link polynomials from the vertex 
models associated with gl(M1N) and the composite models. In particular, we have a 
hierarchy of link polynomials with w = ? / r  = 1 ,  - t ,  which are not contained in those 
related to sl(M). Using our  knowledge of the Hecke algebra we can compare the link 
polynomials with the two-variable link invariants [ l l ,  121. The link polynomials are 
one-variable restrictions w = t’ of the two-variable link invariants. 

It should be emphasised that the braid matrix (39) derived from the vertex model 
associated wit11 gl(MlN) satisfies the Hecke algebra. Under the correspondence (17) 
the braid matrix is equivalent t,o the R matrix [50] discussed in the context of the 
quantum group, or p analogue of universal enveloping algebra. The most important 
information for the construction of l ink poylnomials is the fact that the braid operators 
satisfy the Hecke algebra. 

It is interesting to note that there are different braid matrices with the same 
eigenvalues and number of states, such as the matrix related to gl(210) (or sl(2)) 
and that for gl(ll1). Let us consider things from the viewpoint of solving the defining 
relation of the braid group (the Yang-Baxter relation). We can show that the solution 
of the defining relation of t,he braid group is unique except for signs (Gl,b = & t ’ / 2 ,  for 
a # b )  and the grading under the following assumptions. (i) The braid matrix has  the 
charge conservation property. (ii) If a + b = c + d ,  then a = c and b = d ,  or a = d 
and b = c. (iii) The eigenvalues are 1 and -t. ( iv)  The braid matrix is symmetric. 
(v)  G:: = 0, for a < b .  

We may consider tlie braid matrix from the viewpoint of the monodromy of the 
Knizhnik-Zarnolodchikov equation. The Knizhnik-Zamolodchikov equation associ- 
ated with the Lie superalgebras are given by 

cij a. aa &-=E- d ti j # i  

The operator Cij is 

(74) 

where { t c ’ }  are generators of the algebra acting on the ith vector space in the tensor 
product V(’)  8 . . .  C’(n). Note that for gl(A4IN) tlie matrix elements of the operator 
Clj coincides with the infinitesimal pure braid operator Ri j  derived from the braid 
operators. The infinitesimal pure braid relations for the infinitesimal pure braid op- 
erator Rij give the integrability condition of the Knizhnik-Zamolodchikov equation. 
[30, 31, 461. Therefore we have shown the integrability of the equation from the view- 
point of the solvable models. The knowledge of the braid matrix also determines the 
monodromy mat,rix related to gl(Af1N). 
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We can consider solvable models related to other Lie superalgebras. The problem 
is to  obtain explicit forms of t,he braid matrices and construct associated solvable 
models [51-533. 
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